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Data is exploding and so are the tools to manage It

e Data generatedin2025:181/B
(29 TB/sec).*

Volume of data created and replicated worldwide (source: IDC)
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*https://www.demandsage.com/big-data-statistics
** https://www.fortunebusinessinsights.com/cloud-analytics-market-102248
***https://www.barrons.comy/articles/ai-spending-economy-microsoft-amazon-meta-alphabet-3e2e5fda
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https://www.barrons.com/articles/ai-spending-economy-microsoft-amazon-meta-alphabet-3e2e5fda?utm_source=chatgpt.com

The applications is where you drive the value...

..out the datais actually
more important

e Asmany as 8/% of Al projects fail before
production—poor data quality is aleading cause.*

e Dataengineersspend, onaverage, 80% of their
time fixing and maintaining data pipelines.**

*https://www.akaike.ai/resources/the-hidden-cost-of-poor-data-quality-why-your-ai-initiative-might-be-set-up-for-failure
**https:.//www.collibra.com/blog/the-7/-most-common-data-quality-issues
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such as images, sound, text or video. In 2021,
the term “data-centric AI" for “the discipline of
neering the data used to build an Al system"!,
ring.

Publications » "Everyone wants to do the model work, not the data work": Data Cascades in High-Stakes Al 7ot Gy
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Data Cascades in High-Stakes Al

Nithya Sambasivan - Shivani Kapania - Hannah Highfill - Diana Akrong - Praveen Kumar Paritosh - Lora Mois Aroyo - SIGCHI, ACM (2021)

The Al engineering life cycle [12]

7 [36] define data engineering as “the develop-
on, and maintenance, of systems and processes
ta and produce high-quality, consistent infor-
ts downstream use cases, such as analysis and
machine learning. Data engineering is the intersection of security,
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Hii! “ : ’ Artificial Intelligence (Al) is making a profound impact in almost every domain. A vital enabler of its great
h"ll " A success is the availability of abundant and high-quality data for building machine learning models. Recently,
-l 20 the role of data in Al has been significantly magnified, giving rise to the emerging concept of data-centric
o Al The attention of researchers and practitioners has gradually shifted from advancing model design to

enhancing the analitvy and anantitv oof the data In thic enrvavy we dicence the necaceity onf dataccentrie Al
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Today

I. Fromraw data to reliable pipelines
2. Inside the datalakehouse

3. Live walk-through of a pipeline
4. Q&A



1. Data pipelines



Data

pipelines

A data pipeline is a sequence of processes that move, transform, and prepare
data so it canbe used by applications, analytics, ormachine learning models.

def process data(source_table):

return dIf

Source
table

Intermediate
table

- ML models
- Dashboards

- Al applications

Final
table

__________________




Core elements of a data pipeline

Processing steps: cleaning,
joining, enriching, aggregating...

def process data(source_table):

- ML models
- Dashboards

return dIf

- Al applications

Source Intermediate Final
table table table

/

Destination: where processed data
ends up (data warehouses, feature
stores, dashboards).

Source:; where data comes
from (databases, APIs,
logs, files).



Data pipelines are the circulatory system of your data

-

e Move and transform datafromwhereit's generatedtowhereit’'s
needed.

e Validate and standardize datasoit’'s accurate, consistent, and
usable.

e Automate the flow so datais always available in the right form at
the right time.

e Enable fasterdecisions andreliable applications by keeping data
fresh and dependable.




Real world example: Dashboard for TGcom24

Data pipelines
Cleaning, aggregation and feature preparation
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Landing, staging, transform architecture

Sources
(APls, Postgres, etc) Landing area Staging area Transform Area Downstream
Raw tables Clean standard tables Marts and features applications
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\ Feature store
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Machine
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2. Datainfrastructure



The data lakehouse .

The scalability of a datalake + the Processing Layer
Multiple engines
management features of a warehouse
e Storedatainopenformats(lceberg)on SQL engines Python Spark
object storage.
e Supports multiple compute enginesfor f

different use cases. Table Format

Metadata Catalog
ICEBERG{J

Object storage
(e.g. AWS S3)

Ingestion layer and data sources
(Postgres, APls, custom connectors, etc)




Ad Va nt a g es Bl / Analytics Machine Learning Al

Processing Layer

e Separation of storage and compute: store Multiple engines

once, scale compute as needed.

e Unification, not silos: same data powers SQL engines Python Spark
analytics, pipelines, ML models. f
e Tables, not files: get ACID guarantees, versions

and schema evolution. Table Format

| | Metadata Catalo
e Open: uselcebergto speakwith all kinds of -

ehgines. ICEBERG{J

Object storage
(e.g. AWS S3)

Ingestion layer and data sources
(Postgres, APls, custom connectors, etc)




Still pipelines remain hard



Fragmentation across the stack

at org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:912)
at org.apache.spark.deploy.yarn.ExecutorLauncher$.main(ApplicationMaster.scala:944)
at org.apache.spark.deploy.yarn.ExecutorLauncher.main(ApplicationMaster.scala)
Caused by: java.io0.I0Exception: Failed to connect to emr-header-1.cluster .+ 38803
at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:288)
" ' at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:218)
o EﬂVernl I Ient drlft. at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:230)
at org.apache.spark.rpc.netty.NettyRpcEnv.createClient(NettyRpcEnv.scala:204)
' . at org.apache.spark.rpc.netty.Outbox$$anon$l.call(Outbox.scala:202)
® Scallng paln. at org.apache.spark.rpc.netty.Outbox$$anon$l.call(Outbox.scala:198)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
' at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor. java:1149)
o COld StartS & resource COnte ntIOn. at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor. java:624)
at java.lang.Thread.run(Thread. java:748)
. . . Caused by: java.net.UnknownHostException: emr-header-1.cluster-3B
o Debugglng IS palnfUL at java.net.InetAddress.getAlLByName@(InetAddress. java:1281)
at java.net.InetAddress.getAl1LByName(InetAddress.java:1193)
at java.net.InetAddress.getAlLByName(InetAddress.java:1127)
at java.net.InetAddress.getByName(InetAddress. java:1077)
at 10.netty.util.internal.SocketUtils$8.run(SocketUtils.java:156)
at 10.netty.util.internal.SocketUtils$8.run(SocketUtils. java:153)

1. Runtime problems

2 " Storage and Catalog prOblemS at java.security.AccessController.doPrivileged(Native Method)

at 10.netty.util.internal.SocketUtils.addressByName(SocketUt1ils.java:153)

' at 10.netty.resolver.DefaultNameResolver.doResolve(DefaultNameResolver. java:41)
® | n C O n S I Ste nt State . at 10.netty.resolver.SimpleNameResolver.resolve(SimpleNameResolver. java:61)
at 10.netty.resolver.SimpleNameResolver.resolve(SimpleNameResolver. java:53)
at 10.netty.resolver.InetSocketAddressResolver.doResolve(InetSocketAddressResolver. java:55)

e Lack of dataversioning.
e Schema drift.

3. Orchestration problems

e \Waterfall errors.

e Over-engineered DAGSs.

e Couplinglogic to orchestration
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netty.
hetty.
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.hetty.
.util.concurrent.DefaultPromise.setSuccess@(DefaultPromise. java:605)
.hetty.
netty.
.hetty.
.channel .AbstractChannel$AbstractUnsafe.register@(AbstractChannel. java:516)

netty

netty

nhetty.
netty.
nhetty.
netty.
nhetty.
netty.
netty.
.hetty.

more

resolver.InetSocketAddressResolver.doResolve(InetSocketAddressResolver. java:31)
resolver.AbstractAddressResolver.resolve(AbstractAddressResolver. java:106)
bootstrap.Bootstrap.doResolveAndConnect@(Bootstrap. java:206)
bootstrap.Bootstrap.access$000(Bootstrap. java:46)
bootstrap.Bootstrap$l.operationComplete(Bootstrap.java:180)
bootstrap.Bootstrap$l.operationComplete(Bootstrap.java:166)
util.concurrent.DefaultPromise.notifylListener@(DefaultPromise.java:578)
util.concurrent.DefaultPromise.notifyListenersNow(DefaultPromise. java:552)
util.concurrent.DefaultPromise.notifylListeners(DefaultPromise.java:491)
util.concurrent.DefaultPromise.setValue@(DefaultPromise.java:616)

util.concurrent.DefaultPromise.trySuccess(DefaultPromise.java:104)
channel .DefaultChannelPromise. trySuccess(DefaultChannelPromise. java:84)
channel .AbstractChannel$AbstractUnsafe.safeSetSuccess(AbstractChannel. java:1008)

channel .AbstractChannel$AbstractUnsafe.access$200(AbstractChannel. java:429)
channel .AbstractChannel$AbstractUnsafe$l. run(AbstractChannel. java:486)
util.concurrent.AbstractEventExecutor.safekExecute(AbstractEventExecutor. java:164)

util.concurrent.SingleThreadEventExecutor.runAllTasks(SingleThreadEventExecutor. java:469)

channel .n10.Ni1oEventLoop.run(NioEventLoop. java:500)

util.concurrent.SingleThreadEventExecutor$4.run(SingleThreadEventExecutor. java:986)

util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap. java:74)
util.concurrent.FastThreadlLocalRunnable.run(FastThreadLocalRunnable. java:30)
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Accelerate lightweight analytics using Pylceberg with AWS Lambda
and an AWS Glue Iceberg REST endpoint

by Sotaro Hikita and Shuhei Fukami | on 09 MAY 2025 | in Analytics, AWS Big Data, AWS Glue, AWS Lambda | Permalink
| @ Comments| ¢ Share

For modern organizations built on data insights, effective data management is crucial for powering advanced analytics
and machine learning (ML) activities. As data use cases become more complex, data engineering teams require
sophisticated tooling to handle versioning, increasing data volumes, and schema changes across multiple data sources
and applications.

Apache Iceberg has emerged as a popular choice for data lakes, offering ACID (Atomicity, Consistency, Isolation,
Durability) transactions, schema evolution, and time travel capabilities. Iceberg tables can be accessed from various
distributed data processing frameworks like Apache Spark and Trino, making it a flexible solution for diverse data
processing needs. Among the available tools for working with Iceberg, Pylceberg stands out as a Python implementation
that enables table access and management without requiring distributed compute resources.

In this post, we demonstrate how Pylceberg, integrated with the AWS Glue Data Catalog and AWS Lambda, provides a

lightweight approach to harness Iceberg’s powerful features through intuitive Python interfaces. We show how this
integration enables teams to start working with Iceberg tables with minimal setup and infrastructure dependencies.

Pylceberg’s key capabilities and advantages

One of Pylceberg’s primary advantages is its lightweight nature. Without requiring distributed computing frameworks,
teams can perform table operations directly from Python applications, making it suitable for small to medium-scale data
exploration and analysis with minimal learning curve. In addition, Pylceberg is integrated with Python data analysis
libraries like Pandas and Polars, so data users can use their existing skills and workflows.

When using Pylceberg with the Data Catalog and Amazon Simple Storage Service (Amazon S3), data teams can store and

manage their tables in a completely serverless environment. This means data teams can focus on analysis and insights
rather than infrastructure management.
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Today
Landing - Staging - Transform




Bauplanis alakenhouse platform for
engineering teams who treat datalike
software.

No Infrastructure
— Just Python and SQL

— Like Git for data
— Builton Apache lceberg




From Landing to Staging
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From Staging to Transform

— Writeto S3

" Read from S3 @~ DuckDB
top_selling_products g top_selling_suppliers

A
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Data pipelines done well

e Versionyourdata. Track changes to data, code,
and config together forreproducibility.

e |solate workloads. Develop andrun changesin
separate environments before merging to
production.

e Testdata quality. Validate schemas, values, and
expectations before publishing.

e Minimize infrastructure. Fewer moving parts
means lower cost, easier ops, andless to break.







