

JobBERT code-along session

TechWolf @ DataCamp

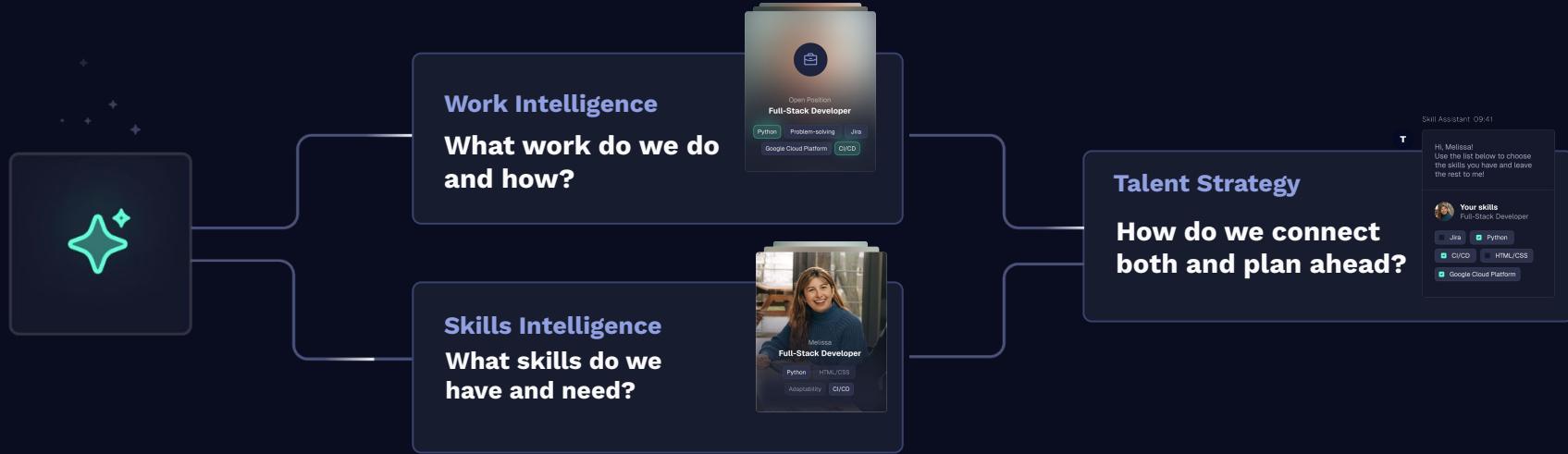
Jens-Joris Decorte, PhD

AI @ TechWolf

The #1 partner for workforce transformation

TechWolf is a **foundational data layer for work intelligence**.

We help our enterprises define and execute their talent strategy in the age of AI.



TechWolf at a glance

LEADING AI RESEARCH

UNIVERSITY OF
CAMBRIDGE

Stanford
University

Imperial College
London

VLAAMS
SUPERCOMPUTER
CENTRUM

RECOGNIZED BY

WORLD
ECONOMIC
FORUM

OUR CUSTOMERS

HSBC

SYNOPSYS®

IQVIA™

engie

signify

KLM

bp

UNITED

workday.

Garrett
ADVANCING MOTION

ucb

T Mobile

MetLife

Booking.com

VELUX®

GSK

Red Hat

Atlas Copco

ERICSSON

JUST EAT

STRATEGIC PARTNERS

crunchr

visier

SAP

workday*

SAP

workday*

serviceNow

INVESTORS

PUBLISHING OVER PATENTING

Open-source

**1.5 million
downloads**

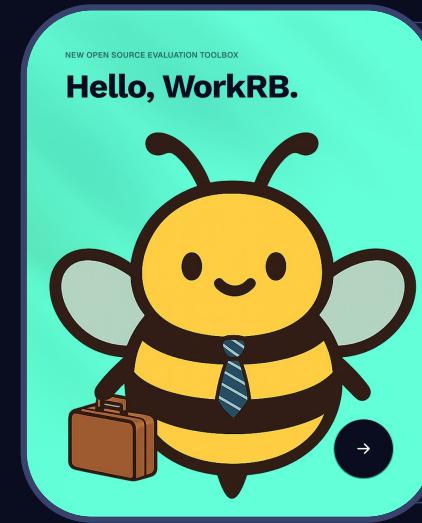
of our open-source datasets and models.

PUBLISHING OVER PATENTING

Open-source

**1.5 million
downloads**

of our open-source datasets and models.



**10+
tasks**
and growing

**34
stars**

on our github repository.

Work Intelligence Index

TECHWOLF

Work Intelligence Index

We looked at over 2 billion job vacancies posted by some of the biggest companies in the world. Using this [public job market data](#), TechWolf estimated how Artificial Intelligence could transform your organization. Select your company to identify AI opportunities, understand what AI means for your workforce, and see how you compare to your peers.

Search for your company...

38% of tasks are disrupted by AI across industries

\$11T potential economic impact from AI adoption

75% of executives plan to increase AI investment

← TECHWOLF

Vision How it works [Get your custom analysis](#)

Hi Apple, here's your AI assessment at a glance

These estimated insights are based on analysis of more than 100,000 publicly available job postings across Apple, combined with current AI capabilities and adoption trends.

AI Implementation Opportunity
27%
of workforce can use AI to boost productivity

Task Automation Potential
15%
of tasks could be enhanced with AI

Workforce Upskilling Needs
75%
of workforce skills might need up- or reskilling

[Back](#) ● ● [Continue >](#)

Context for today: **Labor Market Analysis**

- Which skills are being asked for in the market?
- For which jobs?
- And how does that change over time and regions?

Labor Market Analysis

- Which skills are being asked for in the market?

Skill Extraction

- For which jobs?

Job Title Normalization

- And how does that change over time and regions?

On large amounts of data (efficiency)

Technical resource: *Efficient Text Encoders for Labor Market Analysis*; Decorte et al. 2025

Efficient Text Encoders for Labor Market Analysis

**JENS-JORIS DECORTE^{1,2}, JEROEN VAN HAUTTE¹,
CHRIS DEVELDER^{1,2}, (Senior Member, IEEE), AND THOMAS DEMEESTER²**

¹TechWolf, 9000 Ghent, Belgium

²Internet and Data Science Laboratory (IDLab), Ghent University-imec, 9000 Ghent, Belgium

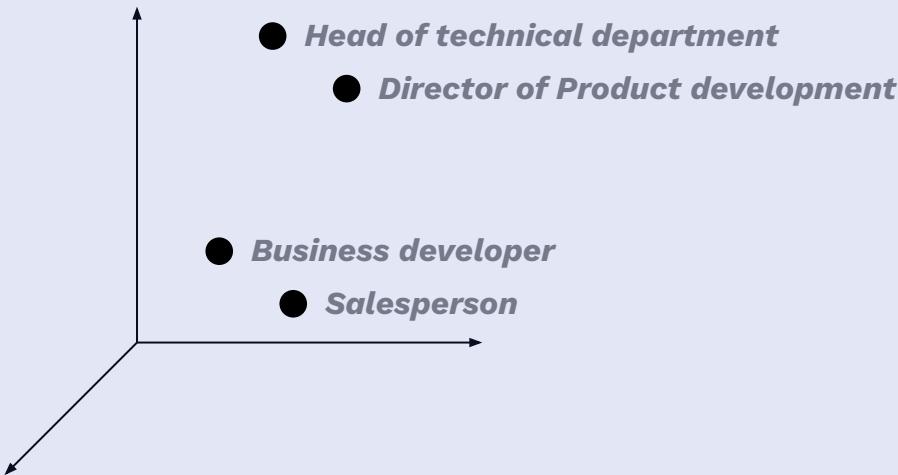
Corresponding author: Jens-Joris Decorte (jensjoris@techwolf.ai)

This work was supported in part by the Flemish Government, through Flanders Innovation and Entrepreneurship (VLAIO) under Project HBC.2020.2893; in part by the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” Program; and in part by TechWolf.

ABSTRACT Labor market analysis relies on extracting insights from job advertisements, which provide valuable yet unstructured information on job titles and corresponding skill requirements. While state-of-the-art methods for skill extraction achieve strong performance, they depend on large language models (LLMs), which are computationally expensive and slow. In this paper, we propose ConTeXT-match, a novel contrastive learning approach with token-level attention that is well-suited for the extreme multi-label classification task of skill classification. ConTeXT-match significantly improves skill extraction efficiency and performance, achieving state-of-the-art results with a lightweight bi-encoder model. To support robust evaluation, we introduce Skill-XL a new benchmark with exhaustive, sentence-level skill annotations that explicitly address the redundancy in the large label space. Finally, we present JobBERT V2, an improved job title normalization model that leverages extracted skills to produce high-quality job title representations. Experiments demonstrate that our models are efficient, accurate, and scalable, making them ideal for large-scale, real-time labor market analysis.

Semantic Job Title Search

Semantic Job Title Search with embeddings



Job Titles Are **Short**

Responsibilities include creating forecasting models, assessing risk in investments and ensuring all accounting activities comply with regulations. To be successful in this role, you should have experience crafting financial strategies and managing accounting teams. Ultimately, you will maintain our company's financial health and increase profitability in the long run ...

Head of Finance

- Few words
- Non-descriptive
- Rich meaning

Job Titles Are **Highly Contextual**

Single words are ambiguous. What do these words mean?

- Consultant, Engineer, Analyst, Manager...

An **API developer** is more related to a **software engineer** than it is to **business developer**.

Job Titles Are **Wild**

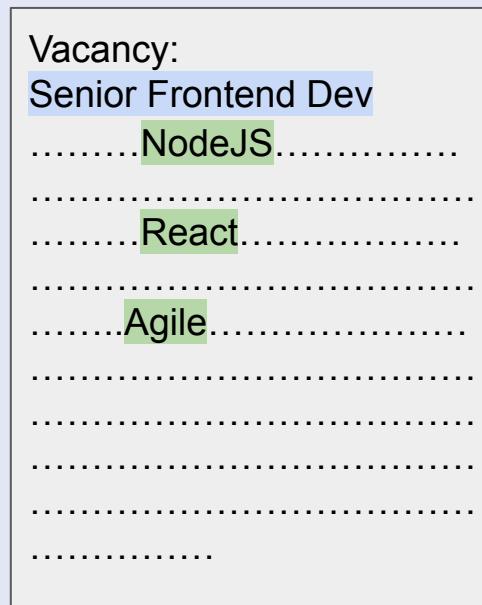
Elon Musk changes job title to
'Technoking of Tesla'

JobBERT: Understanding Job Titles through Skills

Main idea: learn what job titles **mean.**

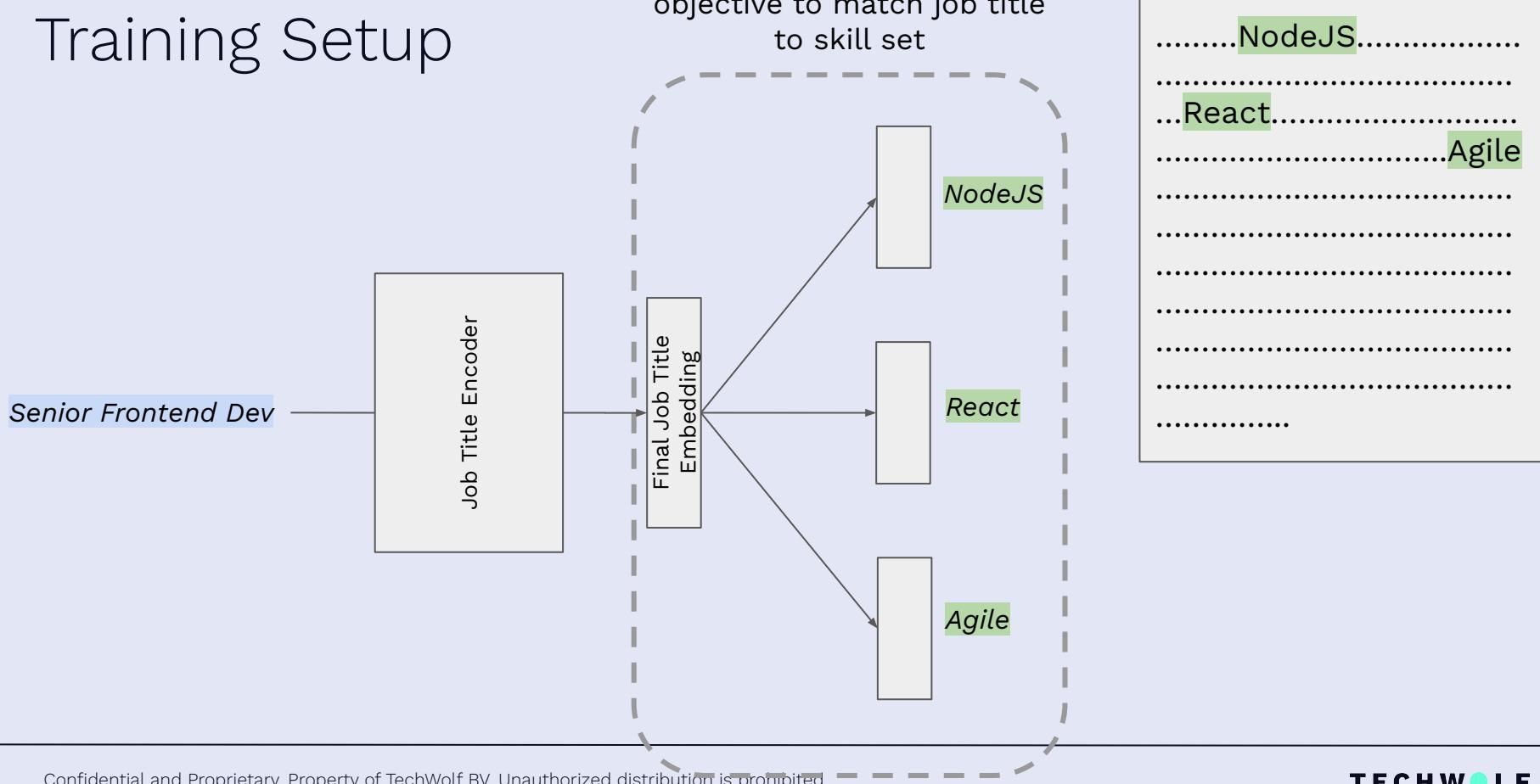
Definition of “meaning” \Rightarrow **skills**

Dataset: **vacancies**



Training Setup

Contrastive learning
objective to match job title
to skill set



JobBERT V2

Improved training **data quality**, simplified **training method**, **SoTA results**

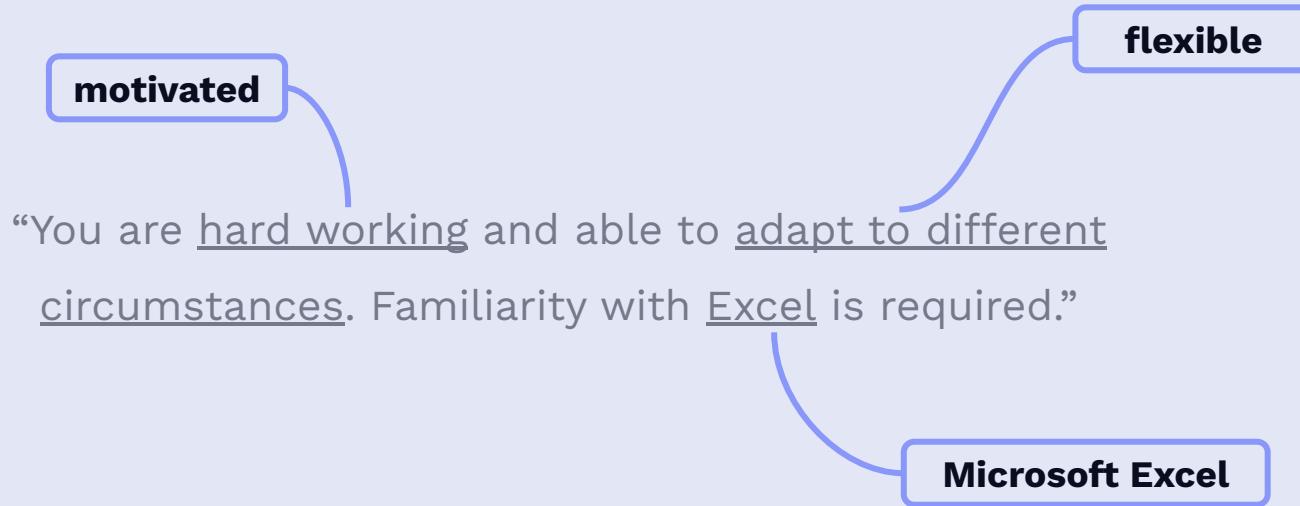
- Skills extracted with the ConTeXT-match skill extraction model
- JobBERT v2 is trained on 5.6M job ads (instead of 300M)
- Simple contrastive learning between job title and full comma-separated list of skills

TABLE 3. Performance comparison on the original JobBERT job title normalization benchmark. Metrics include Mean Reciprocal Rank (MRR) and Recall at Top-K (RP@5, RP@10). Results of previous methods are the reported scores. The recall is reported in percentage points.

Model	MRR	R@5	R@10
JobBERT V1 [7]	0.309	38.65	46.04
Doc2VecSkill [18]	0.341	45.95	54.00
JD Aggregation Network [20]	0.387	49.24	57.22
JobBERT V2 (Ours)	0.390	50.08	58.47

Skill Extraction

Skill Extraction: contextual phrase normalization



Skill Extraction

2010-2020

- Traditionally relies on Named Entity Recognition and rule-based matching, detecting skill spans without normalizing them.
- Modern normalizing methods rely on:
 - one-vs-many classification or
 - bi-encoder based ranking systems.
- Highest accuracy: LLM-based multi-step systems.

Skill Extraction

- Traditionally relies on Named Entity Recognition and rule-based matching, detecting skill spans without normalizing them.
- Modern normalizing methods rely on:
 - one-vs-many classification or
 - bi-encoder based ranking systems.
- Highest accuracy: LLM-based multi-step systems.

2020-2022

Skill Extraction

- Traditionally relies on Named Entity Recognition and rule-based matching, detecting skill spans without normalizing them.
- Modern normalizing methods rely on:
 - one-vs-many classification or
 - bi-encoder based ranking systems.
- Highest accuracy: LLM-based multi-step systems.

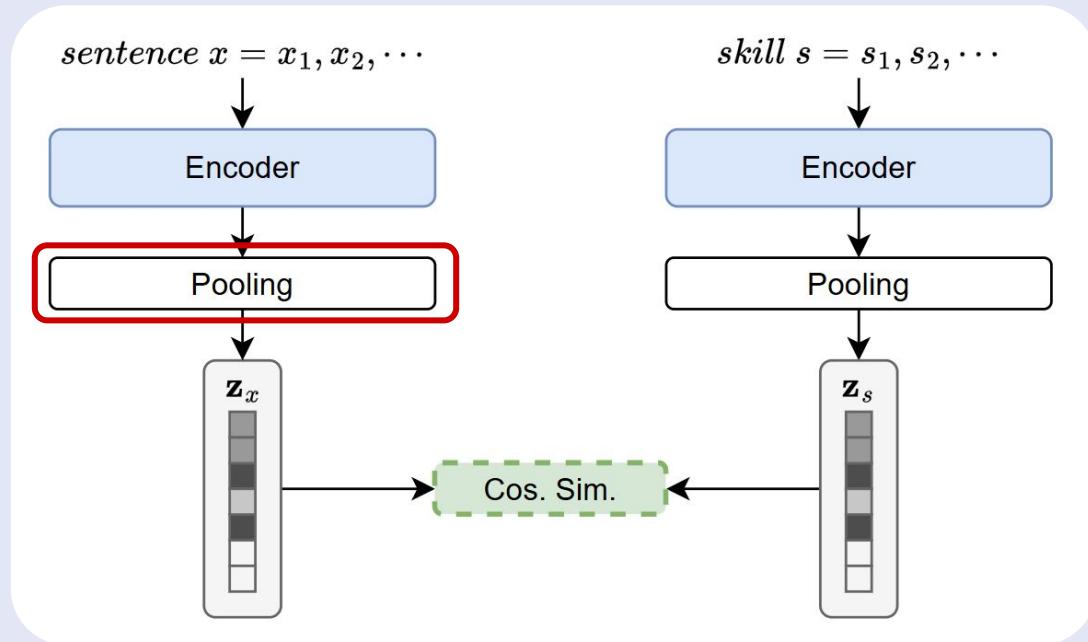
2022-2024

Skill Extraction

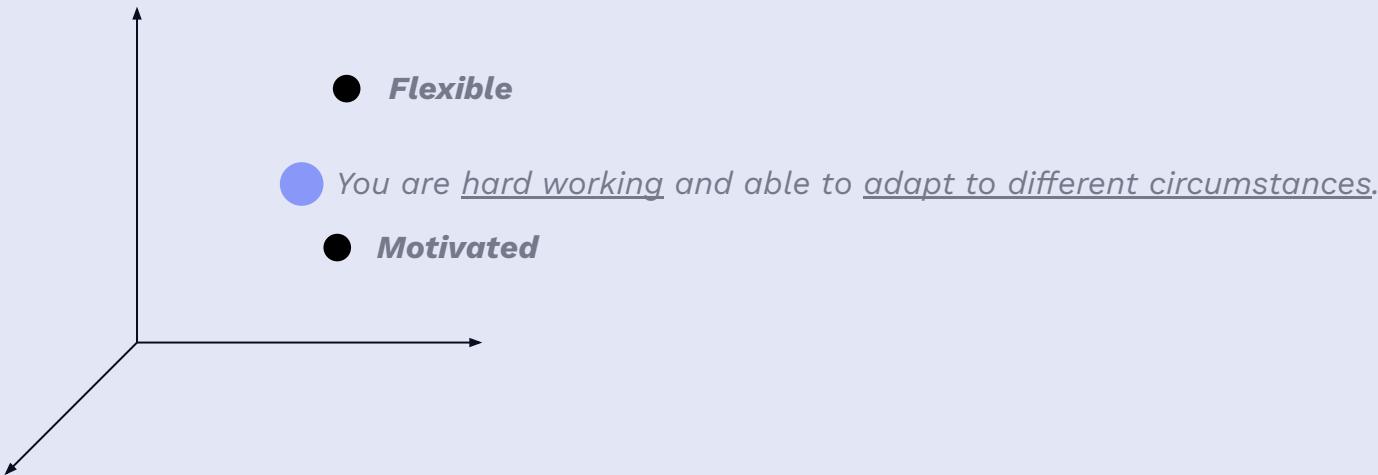
- Traditionally relies on Named Entity Recognition and rule-based matching, detecting skill spans without normalizing them.
- Modern normalizing methods rely on:
 - one-vs-many classification or
 - bi-encoder based ranking systems.
- Highest accuracy: LLM-based multi-step systems.

Best performance / efficiency trade-off: bi-encoder based ranking systems.

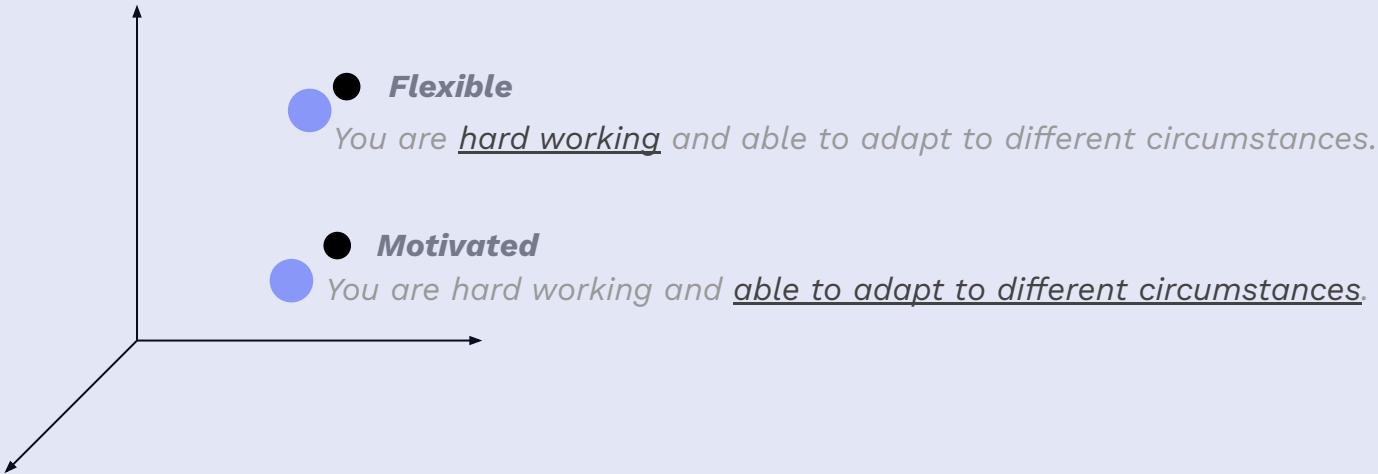
Bi-encoder information bottleneck



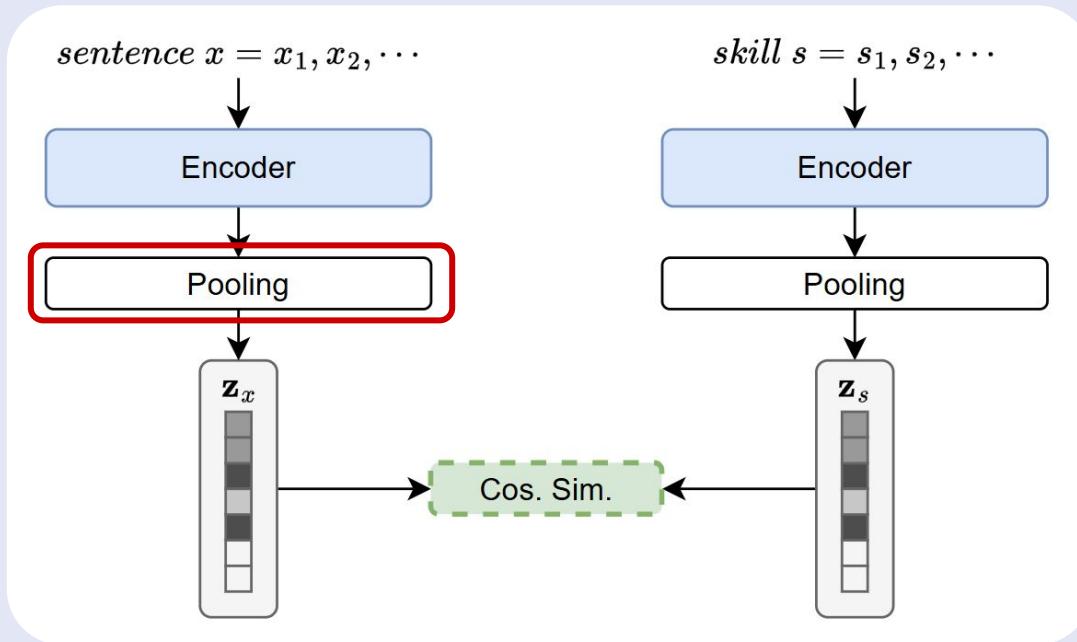
Bi-encoder information bottleneck



Bi-encoder information bottleneck



Bi-encoder information bottleneck



Averaging over entire sentences overlooks valuable token-level information.

Goal: adapt training to match skills with a dynamic range of tokens.

Hypothesis: improved recall and performance.

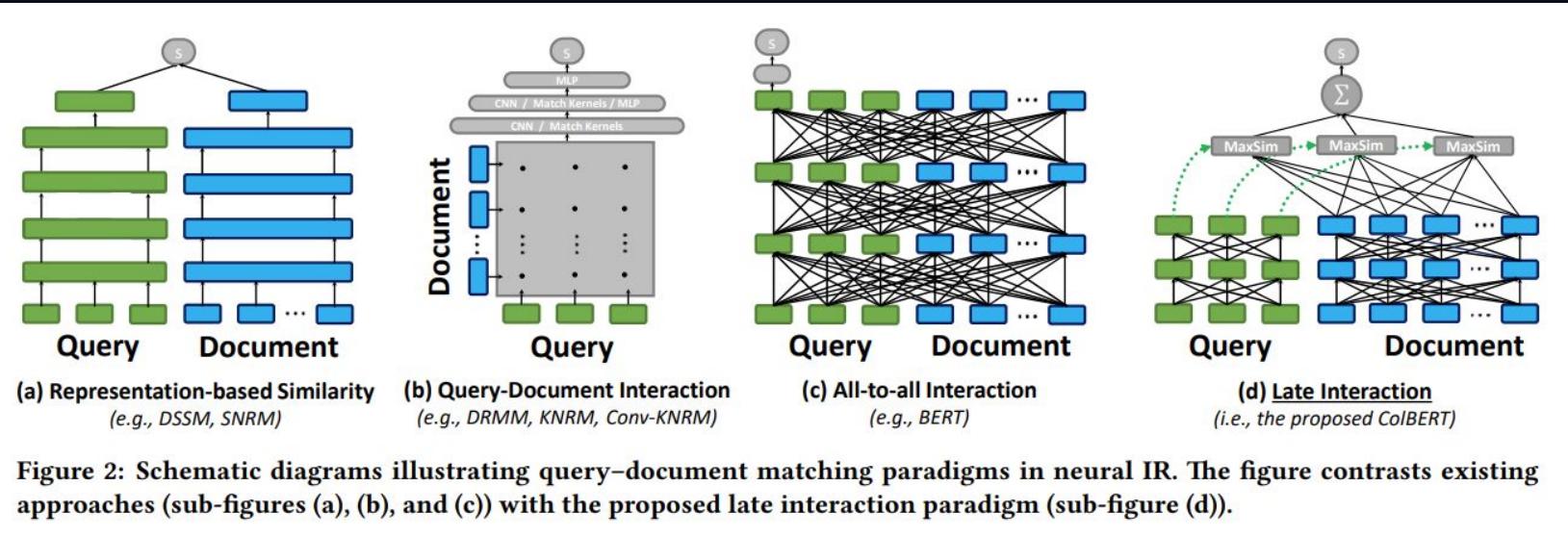
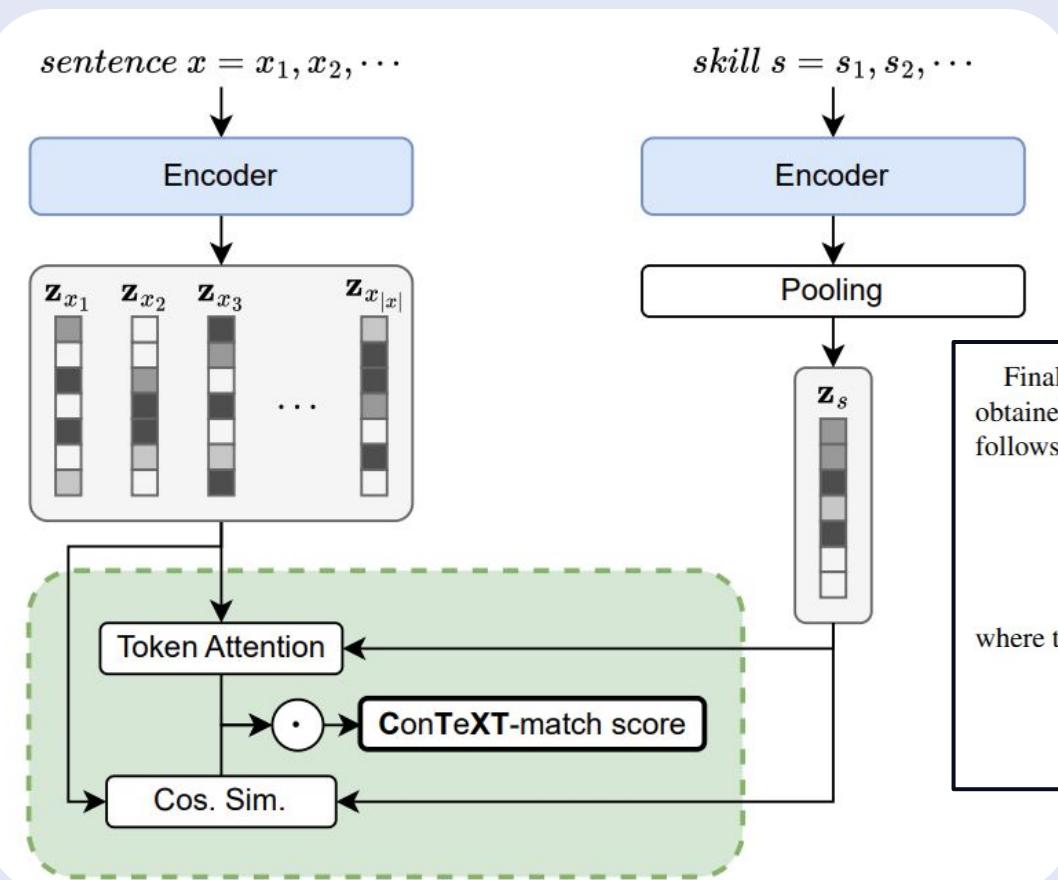


Figure 2: Schematic diagrams illustrating query-document matching paradigms in neural IR. The figure contrasts existing approaches (sub-figures (a), (b), and (c)) with the proposed late interaction paradigm (sub-figure (d)).

Omar Khattab and Matei Zaharia, 2020

Contrastive Token-level Explainable Text matching



ConTeXT-match

Finally, the match between the sentence and the skill is obtained as the weighted average of the token similarities, as follows:

$$\text{match}(x, s) = \sum_{j=1}^{|x|} \alpha_j \cdot \cos(\mathbf{z}_{x_j}, \mathbf{z}_s), \quad (3)$$

where the weights α_j sum to one, as defined by

$$\alpha_j = \frac{\exp(\mathbf{z}_{x_j} \cdot \mathbf{z}_s)}{\sum_{k=1}^{|x|} \exp(\mathbf{z}_{x_k} \cdot \mathbf{z}_s)}. \quad (4)$$

Results

TABLE 2. Performance comparison of skill extraction methods across the SkillSpan-ESCO test sets (HOUSE, TECH, TECHWOLF). Metrics include Mean Reciprocal Rank (MRR) and Recall Precision at Top-K (RP@1, RP@5, RP@10). Following previous work, the RP@K scores are reported in percentage points. Average positive training examples per skill are reported in the first column (N). Results of previous methods are the reported scores, and empty cells mean the metric was not reported. The strongest results per metric are shown in bold, and the second strongest are underlined. Whenever our results are significantly ($p < 0.05$) stronger than the second-best method, we indicate this with *.

	N	HOUSE				TECH				TECHWOLF			
		MRR	RP@1	RP@5	RP@10	MRR	RP@1	RP@5	RP@10	MRR	RP@1	RP@5	RP@10
Encoder classifiers													
Decorte et al. [12]	365	0.299	–	30.82	38.69	0.339	–	31.71	39.19	–	–	–	–
Clavié et al. [4]	40	0.326	27.20	37.60	46.47	0.299	27.16	33.41	39.86	–	–	–	–
Encoder rankers													
Clavié et al. [4]	40	0.355	26.44	35.22	43.73	0.405	32.84	49.67	58.66	–	–	–	–
Decorte et al. [14]	10	0.426	27.10	45.94	53.87	0.521	38.46	54.19	61.52	0.506	37.42	52.64	60.10
ConTeXt-match (Ours)	10	0.530*	38.42	51.09	65.84	0.632*	50.99*	63.98	73.99*	0.562*	43.15*	57.69*	66.08
LLM-based systems													
Clavié et al. [4] GPT3.5	40	0.427	36.92	43.57	51.44	0.488	40.53	52.50	59.75	–	–	–	–
Clavié et al. [4] GPT4	40	<u>0.495</u>	40.70	<u>53.34</u>	61.02	<u>0.537</u>	<u>46.52</u>	<u>61.50</u>	68.94	–	–	–	–
IReRa [5]	n/a	–	–	56.50	66.51	–	–	59.61	<u>70.23</u>	–	–	<u>57.04</u>	<u>65.17</u>

(a) Lead the group in charge of cost and risk management objectives

cost management

lead | the | group | in | charge | of | **cost** | and | risk | management | objectives

lead a team

lead | the | group | in | charge | of | cost | and | risk | management | objectives

risk management

lead | the | group | in | charge | of | cost | and | **risk** | management | objectives

(c) Responsible for diagnosing, repairing, and maintaining cars

diagnose problems with vehicles

responsible | for | dia | gno | sing | , | repairing | , | and | maintaining | cars

carry out repair of vehicles

responsible | for | dia | gno | sing | , | repairing | , | and | maintaining | cars

maintain vehicle service

responsible | for | dia | gno | sing | , | repairing | , | and | maintaining | cars

(b) You will write software in Java, Python and C++

C++

you | will | write | software | in | **java** | , | python | and | **c** | + | +

authoring software

you | will | write | software | in | **java** | , | python | and | **c** | + | +

Java (computer programming)

you | will | write | software | in | **java** | , | python | and | **c** | + | +

Python (computer programming)

you | will | write | software | in | **java** | , | **python** | and | **c** | + | +

Let's put this into practice