Introduction to

in Action

Ben Morss
Developer Evangelist
(and Xoogler)

¥ A
» o

e mii
o i

ImICTET IBE - w27 ‘5;"'!!“-, Bl

"‘“" R AEARC AR ¢ !:i:v
. A [LLLK

||l?;ﬁl' I:i,'Ii

. W |
Il £
IS Ly N
- | n n

iﬂv'ﬂiﬁﬁm:&% iﬁ:;;ﬂiﬂ ﬁﬂiﬁu@hﬁ&ﬁj{?'

R | TR ety AR N RS et

e Products v Solutions v Pricing Apps Vv

(7A DeepL Translator]

Translate text Translate files +o DeepL Write
2 Deepl Write } @ % ;

A 35 languages .pdf, .docx, .pptx Al-powered edits

Glossaries
99 style rules English (detected) < Slovak v

Note to self: don't fall off the stage like you did last time!

Q)

Poznamka pre seba: nespadni z podia ako minule!

4= Alternatives X
Upozornenie ...
Pozor ...

Odporucanie ... 7 &P O <
@ Odkaz ...

BM° Download free Mac app

1B}

Editing tools
& Formality
@ Clarify

Customizations
Glossaries
99 Style rules

Powered by

&/ Language model

E@

Next-gen v

@ Deepl Agent ()

®
o
&

Y=
v=

New task

Artifacts

Workflows

All tasks

Recent

0]

© 0 000060600606

9)

Workflow Creation Tutorial

Interactive Prompting Tutoriz
GDPR EN-IT Glossary Creatic
GDPR EN-IT Glossary Creatic
Create GDPR English-Italian |
Convert VTT to German via)
Create blog article on machit
Audit DeepL blog localizatior
Research Agentic Al for Locz
Research Best Storytelling W

Research machine translatiol

Contact us

0 Morana 2

What do you want to achieve?

Compare the English (EN) and Italian (IT) version of the EU GDPR regulatich at https://eur-
lex.europa.eu/eli/reg/2016/679/0oj/eng . Then create an English-Italian glossary of the most relevant
terms in the EU regulation and upload it to DeepL with the name “"GDPR glossary”.

@

D &

How to Use Examples

[Better Prompting

Learn how to write clear, specific prompts that produce better results

53 Workflows

Discover how to create and use workflows for complex tasks

O Artifacts

Understand how artifacts store and organize your work results

[J README &3 MIT license

deepl-mcp-server
npm_ license MIT smithery.ai

A Model Context Protocol (MCP) server that provides translation capabilities using the DeepL API.

Features

Translate text between numerous languages

Rephrase text using Deepl's capabilities

Access to all DeepL API languages and features

Automatic language detection

Formality control for supported languages

Installation

You can install this using npm:
npm install deepl-mcp-server
Or you can clone this repository and install dependencies:

git clone https://qgithub.com/DeepLcom/deepl-mcp-server.git

No packages published
Publish your first package

Contributors 4

e akash-joshi Akash Joshi

(|
’.'I morsssss Ben Morss

0- leoncheng57 Leon Cheng

=" smithery-ai[bot]

Languages

e
® JavaScript 96.0% Dockerfile 4.0%

Suggested workflows
Based on your tech stack

Q Deno Configure

Test your Deno project

@ Datadog Synthetics configure

Run Datadog Synthetic tests within
your GitHub Actions workflow

Qﬂ‘f Stainless Customers Docs Pricing Resources v

MCP is eating the world
—and it's here to stay

%} Young-jin Park

Despite the hype, Model Context Protocol (MCP) isn't magic or revolutionary. But,
it's simple, well-timed, and well-executed. At Stainless, we're betting it's here to

stay.

What you'll need: an Al client

We'll be using Claude Desktop

e You can also use Windsurf, Cursor, etc.

e Long clients list:
https://modelcontextprotocol.io/clients

https://modelcontextprotocol.io/clients

bit.ly/mcp-deck-datacamp
bit.ly/mcp-code

bit.ly/mcp-post

What is MCP?| '
Using MCP as aclient -

Building your MCP server

What is MCP?

e A new standard from Anthropic that gives Al
clients to outside tools and resources

e uses JSON-RPC

e inspired by Language Server Protocol

What is MCP?

model
context

protocol

What's an Al client?

e any app which embeds an LLM
e you could build your own with Langchain etc

833 wid

Can you write me some Python code that uses the DeepL API to translate "The rain in Spain falls mainly in the plain" into
Spanish, making it more casual?

Context — none >

Here's Python code to translate that text into Spanish with casual formality using the DeepL API:

import deepl
import os Why use an MCP?
Initialize the DeepL client
Make sure to set your DEEPL_API_KEY environment variable
api_key = os.getenv('DEEPL_API_KEY')
if not api_key:
raise ValueError("DEEPL_API_KEY environment variable is required")

translator = deepl.Translator(api_key)

Text to translate
text = "The rain in Spain falls mainly in the plain"

try:

b Tramelndra A Crhnanaecehlh wisd+h Amnciimn1l €fAarmal 3 42w

Read file

Read text file
Read media file
Read multiple files
Write file

Edit file

Create directory

Toolformer: Language Models Can Teach Themselves to Use Tools

Timo Schick Jane Dwivedi-Yu Roberto Dessi’ Roberta Raileanu
Maria Lomeli Luke Zettlemoyer Nicola Cancedda Thomas Scialom

Meta Al Research "Universitat Pompeu Fabra

Abstract The New England Journal of Medicine is a registered
trademark of [QA(“Who is the publisher of The New
England Journal of Medicine?”) — Massachusetts
Medical Society] the MMS.

Language models (LMs) exhibit remarkable
abilities to solve new tasks from just a few
examples or textual instructions, especially at
scale. They also, paradoxically, struggle with N
basic functionality, such as arithmetic or fac- Out of 1400 participants, 400 (or [Calculator(400 / 1400)
tual lookup, where much simpler and smaller —0.29] 29%) passed the test.

models excel. In this paper, we show that

@ You now have access to a special calculation tool, which you can access at any time
when you need to do arithmetic precisely. To use this calculation tool, simply output
this format:

<Calculator>{expression}</Calculator>

where {expression} is any arithmetic expression.

So, for example, to calculate 8 times 7, you'd output <Calculator>8 * 7</Calculator>

Tool use system prompt

When you call the Claude API with the tools parameter, we construct a special system
prompt from the tool definitions, tool configuration, and any user-specified system
prompt. The constructed prompt is designed to instruct the model to use the specified

tool(s) and provide the necessary context for the tool to operate properly:

In this environment you have access to a set of tools you can use to ans'(): t
{{ FORMATTING INSTRUCTIONS }}

String and scalar parameters should be specified as is, while 1lists and objec
Here are the functions available in JSONSchema format:

{{ TOOL DEFINITIONS IN JSON SCHEMA }}

{{ USER SYSTEM PROMPT }}

{{ TOOL CONFIGURATION }} %Claude DOCS

Using MCP as a client -

Building your MCP server

=]

MCP Server

=

I

Sorve

End-User

MCP Clirent

O

&l

"mcpServers": {

""jokes in JavaScript": {
"command": "node",
"argS": [

"/Users/sofo/Code/mcp/jokes—js/jokes.js"

Mac: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Linux: ~/.config/Claude/claude-desktop-config.json

"mcpServers": {
"deepl": {
"command": "npx“,
"args": ["-y", "/Users/sofo/Code/deepl-mcp-server"],
"env'": {
"DEEPL_API_KEY": "[redacted]"
I

Mac: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config. json
Linux: ~/.config/Claude/claude-desktop-config.json

"jokes in Python": {

"command": "/Users/sofo/.local/bin/uv",

"args": [
“"——directory",
"/Users/sofo/Code/deepl-mcp-server/workshops/jokes—-python",
"run",
"fastmcp",
“"run",
"jokes.py"

@ Can you translate "The rain in Spain falls mainly in the plain" for me, but make it very

formal?

I'll translate that phrase and make it more formal for you.

D translate-text

Request]
{
“text : "The rain in Spain falls mainly in the plain’,
“formality : “more’,
“targetLang : "es’
I
Response il

La lluvia en Espafa cae principalmente en la llanura

The formal Spanish translation is: "La lluvia en Espaiia cae principalmente en la llanura"

This maintains the formal tone you requested while preserving the meaning and even the
alliterative quality of the original English phrase.

Home

Get started
Quickstart
LangGraph basics
Deployment

Prebuilt agents
Overview
Running agents
Streaming
Models

Tools

MCP Integration
Context
Memory
Human-in-the-loop
Multi-agent
Evals
Deployment

ul

MCP Integration

Model Context Protocol (MCP) is an open protocol that standardizes how applications

provide tools and context to language models. LangGraph agents can use tools defined on

MCP servers through the langchain-mcp-adapters library.

MCP Servers MCP Clients
Servers provio(e_ context, ‘tools, Clients wmaintain 11 conmections
and prompts to clients with servers, inside the host app

(& la\uo(e,
o(e,sktop
app client

Eoach server
can have
many tools

[oac&__mcp__‘tools

Py client

Install the langchain-mcp-adapters library to use MCP tools in LangGraph:

pip install langchain-mcp-adapters

App

(o) lauole_
o(esktop

app
S

Lomgé-,raph
Agent

N b

What is MCP?@ of .|
Using MCP as aclient -

Building your MCP server

What you'll need: this code

bit.ly/mcp-code

What you'll need: a coding language

@ Model Context Protocol

We'll show examples in Q search.
JavaScript and Python

TypeScript SDK
Java SDK
Kotlin SDK

C# SDK

Swift SDK

https://modelcontextprotocol.io/quickstart/server has links to client libraries

https://modelcontextprotocol.io/quickstart/server

What you'll need:

Installation

Install FastMCP
Il and manage FastMCP.

P in your project, you can add it as a dependency with:

 RESOURCES

PROMPTS

Building your MCP server

1. instantiate an MCP server
2. write a function for each tool

3. define MCP configurations for tools and
add to server

4. connect the server to a transport and go!

API|s you can use

WEe'll use publicapi.dev/official-joke-api

But you could use:

® yours

e Deepl’s

e apipheny.io/free-api

1. Instantiate an MCP server

from fastmcp import FastMCP

mcp = FastMCP("jokes")

2. Write a function for each tool

name get joke by 1id

description "Get a joke with a specific
1id (valid range: 1-451)"

typed parameters id: Annotated[int,
Field(ge=1, le=451)]

2. Write a function for each tool

@mcp .tool
def get_consistent_joke() -> str:

Tell the same joke, every time.'''

return "What's brown and sticky?\nA stick!

3. Define MCP configurations for tools and
add to server

4. Connect the server to a transport and go!

if __name__ == "__main__":

mcp.run()

stdio streamable http

A teeny-tiny version of the Jokes MCP server

from fastmcp import FastMCP
mcp = FastMCP("one joke")

@mcp.tool
def get_consistent_joke() -> str:
return "What's brown and sticky? A stick!”

if __name__ == "__main__":
mcp.run()

A tool that calls the Jokes AP|

@mcp.tool
def get_joke() -> str:
"Get a random joke"
response = requests.get(API_BASE_URL + '/random_joke')
json = response.json()
return extract_joke(json)

A tool with input validation

@mcp.tool
def get_joke_by_id(id: Annotated[int, Field(ge=1, le=451)]) -> str:
"Get a joke with a specific id (valid range: 1-451)"
response = requests.get(f"{API_BASE_URL}/jokes/{id}")
json = response.json()
return extract_joke(json)

MCP Inspector

In-depth guide to using the MCP Inspector for testing and debugging Model
Context Protocol servers

The MCP Inspector is an interactive developer tool for testing and debugging MCP
servers. While the Debugging Guide covers the Inspector as part of the overall
debugging toolkit, this document provides a detailed exploration of the Inspector’s

features and capabilities.

fastmcp dev jokes.py

Using Javascript

server.tool() takes 5 params:

name: string

description: string

{parameters: schema}

run: (params: object) => { [type : string, content: string], ..}

{examples}

Javascript

const { McpServer } = require("@modelcontextprotocol/sdk/server/mcp.js");

const { StdioServerTransport } = require("@modelcontextprotocol/sdk/server/stdio.js");
const z = require("zod");

const axios = require("axios");

A tool with input validation

// Slightly more advanced: a tool which wants to be passed an integer
in a fixed range

server.tool(
'get-joke-by-id',
'Get a joke with a specific id. The id must be between 1 and 451.°",

{

id: z.number().int().min(1).max(451)
b
jokeByID

) ;

A tool with input validation

async function jokeByID({ id }) {
try {
const res = await axios.get(S{API_BASE_URL}/jokes/S${id});
return mcpTextContentify(extractJoke(res.data));
} catch (error) {
handleJokeFetchError(error);

}
}

return {
content:

{

[

type: "text™,

text:

"I'm the text!"

// Helper function which wraps a string or strings in the object
structure MCP expects (simplified)

function mcpTextContentify(param) {
let strings = typeof(param) == 'string' ? [param] : param;

const contentObjects = strings.map(

str => ({
type: "text”,
text: str

})
)i

server.tool(
'get-consistent-joke',
'Tell the same joke, every single time',
async () => mcpTextContentify(consistentJoke)

) ;

