X datacawp
Python Basics
Getting started with Python Cheat Sheet

Learn Python online at www.DataCamp.com

> How to use this cheat sheet

Python is the most popular programming language in data science. It is easy to learn and comes with a wide array of
powerful libraries for data analysis. This cheat sheet provides beginners and intermediate users a guide to starting
using python. Use it to jump-start your journey with python. If you want more detailed Python cheat sheets, check out
the following cheat sheets below:

X datacawp

Python For Data Science
Importing Data Cheat Sheet

% mporting data in python

Data wrangling in pandas

3 Accessing help and getting object types

1 + 1 # Everything after the hash symbol is ignored by Python
help(max) # Display the documentation for the max function
type('a') # Get the type of an object — this returns str

N Importing packages

Python packages are a collection of useful tools developed by the open-source community. They extend the
capabilities of the python language. To install a new package (for example, pandas), you can go to your command
prompt and type in pip install pandas. Once a package is installed, you can import it as follows.

import pandas # Import a package without an alias

import pandas as pd # Import a package with an alias
from pandas import DataFrame # Import an object from a package

3 The working directory

The working directory is the default file path that python reads or saves files into. An example of the working directory
is "C://file/path”. The os library is needed to set and get the working directory.

import os # Import the operating system package
os.getcwd() # Get the current directory
os.setcwd("new/working/directory") # Set the working directory to a new file path

1 Operators

Arithmetic operators

102 + 37 # Add two numbers with +
102 - 37 # Subtract a number with -
4 % 6 # Multiply two numbers with *

22 // 7 # Integer divide a number with //

3 N 4 # Raise to the power with A

22 % 7 # Returns 1 # Get the remainder after
22 [/ 7 # Divide a number by another with / division with %

Assignment operators

a =5 # Assign a value to a
x[0] = 1 # Change the value of an item in a list

Numeric comparison operators

3 == 3 # Test for equality with ==
3 1= 3 # Test for inequality with !=
3 >1 # Test greater than with >

3 >= 3 # Test greater than or equal to with >=
3 < 4 # Test less than with <
3 <= 4 # Test less than or equal to with <=

Logical operators

not(2 == 2) # Logical NOT with not (1 >= 1) or (1 < 1) # Logical OR with or
(1 '=1) and (1 < 1) # Logical AND with and

> Getting started with lists

A list is an ordered and changeable sequence of elements. It can hold integers, characters, floats, strings, and even objects.

Creating lists

Create lists with [], elements separated by commas
x = [1, 3, 2]

List functions and methods

x.sorted(x) # Return a sorted copy of the 1list e.g., [1,2,3]
x.sort() # Sorts the 1list in-place (replaces x)

reversed(x) # Reverse the order of elements in x e.g., [2,3,1]
x.reversed() # Reverse the list in-place

x.count(2) # Count the number of element 2 in the list

Selecting list elements

Python lists are zero-indexed (the first element has index 0). For ranges, the first element is included but the last is not.

Define the list

x=1['a', 'b', 'c', 'd', 'e'l] x[1:3] # Select 1st (inclusive) to 3rd (exclusive)
x[0] # Select the 0th element in the list x[2:] # Select the 2nd to the end

x[-1] # Select the last element in the list x[:3] # Select O0th to 3rd (exclusive)

Concatenating lists

Define the x and y lists X + y # Returns [1, 3, 6, 10, 15, 21]
x = [1, 3, 6] 3 % x # Returns [1, 3, 6, 1, 3, 6, 1, 3, 6]
y = [10, 15, 21]

> Getting started with dictionaries

A dictionary stores data values in key-value pairs. That is, unlike lists which are indexed by position, dictionaries are indexed
by their keys, the names of which must be unique.

Creating dictionaries

Create a dictionary with {}
{ta': 1, 'b': 4, 'c': 9}

Dictionary functions and methods
x = {'a': 1, 'b': 2, 'c': 3} # Define the x dictionary

x.keys() # Get the keys of a dictionary, returns dict_keys(['a', 'b', 'c'])
x.values() # Get the values of a dictionary, returns dict_values([1, 2, 3])

Selecting dictionary elements

x['a'] # 1 # Get a value from a dictionary by specifying the key

& NumPy arrays

NumPy is a python package for scientific computing. It provides multidimensional array objects and efficient operations
on them. To import NumPy, you can run this Python code import numpy as np

Creating arrays

Convert a python list to a NumPy array

np.array([1, 2, 3]1) # Returns array([1, 2, 3])

Return a sequence from start (inclusive) to end (exclusive)
np.arange(1,5) # Returns array([1, 2, 3, 4])

Return a stepped sequence from start (inclusive) to end (exclusive)
np.arange(1,5,2) # Returns array([1, 3])

Repeat values n times

np.repeat([1, 3, 6], 3) # Returns array([1, 1, 1, 3, 3, 3, 6, 6, 6])
Repeat values n times

np.tite([1, 3, 6], 3) # Returns array([1, 3, 6, 1, 3, 6, 1, 3, 61)

> Math functions and methods

All functions take an array as the input.

np.log(x) # Calculate logarithm np.quantile(x, g) # Calculate g-th quantile
np.exp(x) # Calculate exponential np.round(x, n) # Round to n decimal places
np.max(x) # Get maximum value np.var(x) # Calculate variance

np.min(x) # Get minimum value np.std(x) # Calculate standard deviation

np.sum(x) # Calculate sum
np.mean(x) # Calculate mean

>~ Getting started with characters and strings

Create a string with double or single quotes
"DataCamp"

Embed a quote in string with the escape character \
"He said, \"DataCamp\""

Create multi-line strings with triple quotes

A Frame of Data

Tidy, Mine, Analyze It

Now You Have Meaning

Citation: https://mdsr-book.github.io/haikus.html

str[0] # Get the character at a specific position
str[0:2] # Get a substring from starting to ending index (exclusive)

Combining and splitting strings

"Data" + "Framed" # Concatenate strings with +, this returns 'DataFramed'
3 % "data " # Repeat strings with %, this returns 'data data data '
"beekeepers".split("e") # Split a string on a delimiter, returns ['b', '', 'k', '', 'p', 'rs']

Mutate strings

str = "Jack and Jill"
str.upper() # Convert
str.lower() # Convert
str.title() # Convert
str.replace("J", "P")

Define str

string to uppercase, returns 'JACK AND JILL'

string to lowercase, returns 'jack and jill'

string to title case, returns 'Jack And Jill'

Replaces matches of a substring with another, returns 'Pack and Pill'

T o o o H

1 Getting started with DataFrames

Pandas is a fast and powerful package for data analysis and manipulation in python. To import the package, you can
use import pandas as pd. A pandas DataFrame is a structure that contains two-dimensional data stored as rows and
columns. A pandas series is a structure that contains one-dimensional data.

Creating DataFrames

Create a dataframe from a list of dictionaries
pd.DataFrame([

Create a dataframe from a dictionary
pd.DataFrame({

'a': [1, 2, 3], {'a': 1, 'b': 4, 'c': 'x'},

'b': np.array([4, 4, 61), {'a': 1, 'b': 4, 'c': 'x'},

e ['x', 'x', 'y'] {'a': 3, 'b': 6, 'c': 'y'}
D) D

Selecting DataFrame Elements

Select a row, column or element from a dataframe. Remember: all positions are counted from zero, not one.

Select the row at position 3
df.iloc[3]

Select one column by name

df['col']

Select multiple columns by names
df[['coll', 'col2']]

Select the column at position 2
df.iloc[:, 2]

Select the element at row 2, column 3
df.iloc[3, 2]

Manipulating DataFrames

Concatenate DataFrames vertically # Calculate the mean of each column
pd.concat([df, df]) df.mean()

Concatenate DataFrames horizontally # Get summary statistics by column
pd.concat([df,df],axis="columns") df.agg(aggregation_function)

Get rows matching a condition # Get unique rows
df.query('logical_condition"') df.drop_duplicates()

Drop columns by name # Sort by values in a column
df.drop(columns=['col_name']) df.sort_values(by="'col_name')

Rename columns # Get rows with largest values in a column
df.rename(columns={"oldname": "newname"}) df.nlargest(n, 'col_name')

Add a new column

df.assign(temp_f=9 / 5 % df['temp_c'] + 32)

https://www.datacamp.com/cheat-sheet/importing-data-in-python-cheat-sheet
https://www.datacamp.com/cheat-sheet/pandas-cheat-sheet-data-wrangling-in-python

