
Regular expression (regex or regexp) is a pattern of characters that describes an amount of text. To process
regexes, you will use a “regex engine.” Each of these engines use slightly different syntax called regex
flavor. A list of popular engines can be found . Two common programming languages we discuss on
DataCamp are and which each have their own engines.

Since regex describes patterns of text, it can be used to check for the existence of patterns in a text,
extract substrings from longer strings, and help make adjustments to text. Regex can be very simple to
describe specific words, or it can be more advanced to find vague patterns of characters like the top-level
domain in a url.

here
Python R

What is a regular expression?

Literal character: A literal character is the most basic regular expression you can use. It simply matches
the actual character you write. So if you are trying to represent an “r,” you would write .

Metacharacter: Metacharacters signify to the regex engine that the following character has a special
meaning. You typically include a in front of the metacharacter and they can do things like signify the
beginning of a line, end of a line, or to match any single character.

Character class: A character class (or character set) tells the engine to look for one of a list of characters.
It is signified by and with the characters you are looking for in the middle of the brackets.

Capture group: A capture group is signified by opening and closing, round parenthesis. They allow you to
group regexes together to apply other regex features like quantifiers (see below) to the group.

r

\

[]

> Definitions

> Anchors
Anchors match a position before or after other characters.

^ 

$ 

\A 

\Z 

\b  

\B

match start of line 

match end of line 

match start of line 

match end of line 

match characters at the
start or end of a word 

match characters in the
middle of other non-
space characters

^r 

t$ 

\Ar 

t\Z 

\bfox\b  

\Bee\B

r
r

t 
t

r
r

t 
t

fox
fox

ee
ee

abbit 
accoon

rabbi
foo

abbit 
accoon

rabbi
foo

the red ran 
the ate 

tr s 
b f

parrot 
ferret

trap 
star

parrot 
ferret

trap 
star

foxtrot 
foxskin scarf 

bee 
tree

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

> Matching types of character
Rather than matching specific characters, you can match specific types of characters such as letters,
numbers, and more.

. 

\d 

\D 

\w 

\W 

\s 

\S 

\metacharacter

anything except for a
linebreak

match a digit 

match a non-digit 

match word characters

match non-word
characters

match whitespace 

match non-whitespace 

escape a metacharacter
to match on the
metacharacter

c.e 

\d 

\D 

\wee\w 

\Wbat\W 

\sfox\s 

\See\S 

\. 
\^

cle
che

6060 842 
2 2

The cats ate 
Angry men

rees 
bee4

bat 
bat

fox
fox

rees 
beef

. 
^

an 
ap

-
b|^ b

 5
12

t

At
Swing the fast

the ate 
his ran

t

The cat ate
2 3

acert 
cent

two 
**___

52 
10032

The bee 
eels eat meat

wombat 
bat53

it’s the fox. 
foxfur

the bee stung 
The tall tree

the cat ate 
23

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

. 

\d 

\D 

\w 

\W 

\s 

\S 

\metacharacter

anything except for a
linebreak

match a digit 

match a non-digit 

match word characters 

match non-word
characters

match whitespace 

match non-whitespace 

escape a metacharacter
to match on the
metacharacter

c.e 

\d 

\D 

\wee\w 

\Wbat\W 

\sfox\s 

\See\S 

\. 
\^

cle
che

6060 842 
2 2

The cats ate 
Angry men

rees 
bee4

bat 
bat

fox
fox

rees 
beef

. 
^

an 
ap

-
b|^ b

 5
12

t

At
Swing the fast

the ate 
his ran

t

The cat ate
2 3

acert 
cent

two 
**___

52 
10032

The bee 
eels eat meat

wombat 
bat53

it’s the fox. 
foxfur

the bee stung 
The tall tree

the cat ate 
23

> Character classes
Character classes are sets or ranges of characters.

[xy] 

[x-y] 

[^xy] 

[\^-]

match several characters 

match a range of
characters

does not match several
characters

match metacharacters
inside the character
class

gr[ea]y 

[a-e] 

b^[ae]t 

4[\^\.-+*/]\d

gray 
grey

a ber 
b a d

bit 
but

4^3 
4.2

m
r n

green 
greek

fox 
join

bat 
bet

44 
23

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

> Repetition
Rather than matching single instances of characters, you can match repeated characters.

x* 

x+ 

x? 

x{m} 

x{m,} 

x{m,n} 

x*?, x+?,  
etc.

match zero or more
times

match one or more times 

match zero or one times 

match m times 

match m or more times 

match between m and n
times

match the minimum
number of times - known
as a lazy quantifier

ar*o 

re+ 

ro?a 

\we{2}\w 

2{3,}4 

12{1,3}3 

re+?

cac
c t

g n  
t

st 
nt

671-

4 
84

t e 
f eeee

ao 
arro

ree
ree

roa
ra

deer 
seer

2224 
2222224

123
12223

re
re

arugula 
artichoke

trap 
ruined

root 
rear

red 
enter

224 
123

15335 
1222223

trout 
roasted

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

> Capturing, alternation & backreferences
In order to extract specific parts of a string, you can capture those parts, and even name the parts that you
captured.

(x) 

(?:x) 

(?<name>x)  

(x|y) 

\n   

\k<name>

capturing a pattern 

create a group without
capturing

create a named capture
group 

match several
alternative patterns

reference previous
captures where n is the
group index starting at 1

reference named
captures

(iss)+ 

(?:ab)(cd) 

(?<first>\d)(?
<scrond>\d)\d* 

(re|ba) 

(b)(\w*)\1   

(?<first>5)
(\d*)\k<first>

M ippi 
m ed

Match:
Group 1:

Match:
first: 1 
second: 3

d 
nter

e  

ississ
iss

abcd 
cd

1325 

re
ba

blob 
brib

51245 
55

mist 
persist

acbd 

2 
hello 

rant 
bear

bear 
bring  

523 
51

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

(x) 

(?:x) 

(?<name>x)  

(x|y) 

\n   

\k<name>

capturing a pattern 

create a group without
capturing

create a named capture
group 

match several
alternative patterns

reference previous
captures where n is the
group index starting at 1 

reference named
captures

(iss)+ 

(?:ab)(cd) 

(?<first>\d)(?
<scrond>\d)\d* 

(re|ba) 

(b)(\w*)\1   

(?<first>5)
(\d*)\k<first>

M ippi 
m ed

Match:
Group 1:

Match:
first: 1 
second: 3

d 
nter

e  

ississ
iss

abcd 
cd

1325 

re
ba

blob 
brib

51245 
55

mist 
persist

acbd 

2 
hello 

rant 
bear

bear 
bring  

523 
51

> Lookahead
You can specify that specific characters must appear before or after you match, without including those
characters in the match.

(?=x)   

(?!x)  

(?<=x)   

(?<!x)

looks ahead at the next
characters without using
them in the match 

looks ahead at next
characters to not match
on

looks at previous
characters for a match
without using those in
the match

looks at previous
characters to not match
on

an(?=an) 
iss(?=ipp)  

ai(?!n)

(?<=tr)a     

(?!tr)a

b ana 
Miss ippi  

f l 
brail 

tr il 
tr nslate  

be r 
transl te

an
iss

ai

a
a

a
a

band 
missed  

faint 
train 

bear 
streak  

trail 
strained

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

> Literal matches and modifiers
Modifiers are settings that change the way the matching rules work.

\Qx\E 

(?i)x(?-i). 

(?x)x(?-x) 

(?s)x(?-s)     

(?m)x(?-m)

match start to finish 

set the regex string to
case-insensitive

regex ignores
whitespace

turns on single-line/
DOTALL mode which
makes the “.” include
new-line symbols (\n) in
addition to everything
else

changes ^ and $ to be
end of line rather than
end of string

\Qtell\E 
\Q\d\E

(?i)te(?-i) 

(?x)t a p(?-x) 

(?s)first and
second(?-s)
and third   

^eat and
sleep$

tell 
\d

Te
tE

tap 
tap

first and 
Second and third
    

eat and sleep 
eat and 
sleep

s p 
ach

dance

I’ll tell you this 
I have 5 coins

Trench 
bear

c a t 
rot a potato

first and 
second  
and third   

treat and
sleep 
eat and sleep.

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

> Unicode
Regular expressions can work beyond the Roman alphabet, with things like Chinese characters or emoji.

\X 

\X\X

match graphemes 

match special characters
like ones with an accent

\u0000gmail 

\u00e8 or
\u0065\u0300

@gmail 
@gmail

è

www.email
gmail 
@aol

e

Syntax Description Example  
matches

Example  
pattern

Example  
non-matches

C ode Points: The hexadecimal number used to represent an abstract character in a system like unicode.

Graphemes: Is either a codepoint or a character. All characters are made up of one or more graphemes
in a sequence.

Learn Data Skills Online at www.DataCamp.com

Regular Expressions
Learn regular expressions online at www.DataCamp.com

Cheat Sheet

https://www.regular-expressions.info/tools.html
https://www.datacamp.com/courses/regular-expressions-in-python
https://www.datacamp.com/courses/intermediate-regular-expressions-in-r
https://www.datacamp.com/
https://www.datacamp.com/

