
What is Hugging Face?
Hugging Face is an ecosystem for discovering, running, training, and sharing
machine learning models and datasets, with a strong emphasis on open-
source and reproducibility.

The “core four” libraries are: (models + pipelines),
(fast tokenization), (data loading/processing), and

 (Hub interaction + versioning).

transformers tokenizers
datasets

huggingface_hub

Hugging Face Basics
Working with Hugging Face

Learn Hugging Face online at www.DataCamp.com

> The Hugging Face Hub
The Hub is a Git-backed platform for hosting Models, Datasets, and Spaces
(interactive demos), plus Community features for sharing and discovery.

> Key definitions
A model is a pretrained checkpoint; a tokenizer converts raw text into
tokens; a pipeline bundles preprocessing, inference, and postprocessing for
a task.

A dataset is an Arrow-backed collection of data with splits (train/
validation/test).

A checkpoint is a saved snapshot of model weights/config; inference
means running a trained model on new inputs; a repo is a Git-backed Hub
unit storing models/datasets/Spaces.

> Model Cards and Dataset Cards
A Model Card explains intended use, training data, evaluation, limitations/
biases, and licensing.

A Dataset Card describes data sources, schema/splits, known issues/
biases, ethics, and licensing.

Use cards to assess fitness-for-purpose, risk, and reproducibility.

> Where to run inference?
R un locally for control, lower latency, and offline use (you manage
hardware/dependencies).

Use an inference provider for fast setup and scalability (trade control for
network latency and usage-based costs).

> Workflows - Inference (Transformers)
Quickstart: Run inference with a pipeline

from import transformers pipeline

analyze_sentiment = pipeline(

)

analyze_sentiment()

Create a pipeline by specifying a task and model ID

Run inference on input text

"sentiment-analysis",

 model="distilbert-base-uncased-finetuned-sst-2-english"

"Hugging Face makes NLP workflows easy!"

Text summarization

from import transformers pipeline

summarize_text = pipeline(

model=
)

summarize_text()

Create a summarization pipeline

Summarize input text

"summarization",

 "facebook/bart-large-cnn"

"Long document text goes here..."

Document question answering

from import transformers pipeline

answer_question = pipeline(

 ,

model=
)

answer_question(

 image=
question=
)

Create a document QA pipeline

Ask a question about a document image

"document-question-answering"
 "impira/layoutlm-document-qa"

"invoice.png",

 "What is the invoice total?"

Run inference manually

import
from import

with

torch

 transformers AutoTokenizer, AutoModelForSequenceClassification

model_id =

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForSequenceClassification.from_pretrained(model_id)

inputs = tokenizer(, return_tensors=)

 torch.no_grad():

 outputs = model(**inputs)

outputs.logits.argmax(dim=).item()

"distilbert-base-uncased-finetuned-sst-2-english"

"Hugging Face is great" "pt"

-1

> Working with the Hub (huggingface_hub)
Save locally and reload

from import transformers AutoTokenizer, AutoModelForSequenceClassification

model_id =

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForSequenceClassification.from_pretrained(model_id)

tokenizer.save_pretrained()

model.save_pretrained()

AutoTokenizer.from_pretrained()

AutoModelForSequenceClassification.from_pretrained()

"distilbert-base-uncased-finetuned-sst-2-english"

"local_tokenizer"
"local_model"

"local_tokenizer"
"local_model"

Log in to the Hub

from import huggingface_hub login

login()

Upload (push) a model to the Hub

from import transformers AutoTokenizer, AutoModelForSequenceClassification

repo_id =

tokenizer = AutoTokenizer.from_pretrained()

model = AutoModelForSequenceClassification.from_pretrained(

)

tokenizer.push_to_hub(repo_id)

model.push_to_hub(repo_id)

"your-username/my-model"

"distilbert-base-uncased"
"distilbert-

base-uncased"

> Data processing workflows (datasets)
Load and slice datasets

from import

range

 datasets load_dataset

movie_reviews = load_dataset()

train_reviews = movie_reviews[]

train_reviews[]

small_sample = train_reviews.select(())

"imdb"

"train"
0

100

Preprocess a dataset

from import
from import

def
return

map

 datasets load_dataset

 transformers AutoTokenizer

dataset = load_dataset()

tokenizer = AutoTokenizer.from_pretrained()

 tokenize_batch(batch):

 tokenizer(

 batch[],

 truncation=True,

 padding= ,

 max_length=
)

tokenized_dataset = dataset. (

 tokenize_batch,

 batched=True,

 remove_columns=[]

)

"imdb"
"distilbert-base-uncased"

"text"

"max_length"

"text"

256

Learn Data Skills Online at
www.DataCamp.com

