What are Window Functions?

Partition by

We can use PARTITION BY together with OVER to specify the column over

A window function makes a calculation across multiple rows that are related to _ s
which the aggregation is performed.

the current row. For example, a window function allows you to calculate.

Comparing PARTITION BY with GROUP BY, we find the following similarity and

* Running totals (i.e. sum values from all the rows before the current row) difference:

« 7-day moving averages (i.e. average values from 7 rows before the current row)

» Just like GROUP BY, the OVER subclause splits the rows into as many partitions
as there are unigue values in a column.

* Rankings

Similar to an aggregate function (GROUP BY), a window function performs the
operation across multiple rows. Unlike an aggregate function, a window function
does not group rows into one single row.

« However, while the result of a GROUP BY aggregates all rows, the result of a
window function using PARTITION BY aggregates each partition
independently. Without the PARTITION BY clause, the result set is one single
partition.

AGGREGATE
FUNCTION

WINDOW
FUNCTION

Example dataset

For example, using GROUP BY, we can calculate the average price of bicycles
per model year using the following query.

We will use a dataset on the sales of bicycles as a sample. This dataset | “ . 3 “ ‘.
includes: SELECT T T
% hodel_year, 2016 960, 29923
AVG(list_price) avg_price o e
FROM products 2016 1656 470441
The [product] table | ‘I . 3 “ }. SROUP B% it as

The product table contains the types of bicycles sold, their model year, and list What if we want to compare each product’s price with the average price of

price. that year? To do that, we use the AVG() window function and PARTITION BY the
model year, as such.
product_id product_name model_year list_price
SELECT
. : ; . : IHDUEL_‘:.I'E-EP, meodel_gsar ¥ producl_sams Met_price ~ Gvg_pies
1 Treak 820 - 2016 2016 379.99 Windows can be defined in the SELECT section of the query. P EAYEE T 215 Elsctrs Anstercan Feshion 3 Lacies’ - 899.99 1688.4704d1
= f 1 W LS
z Ritchey Timberwolf Frameset - 2016 2016 749 .99 SELECT -Lis-t—E-"Pi':Erl 2017 :Iu.?gtra Anstarcan Fashion 71 Lavies' - 169959 1279951176
'.'Jindﬂ'.'l_funﬂtiﬂn[} I:]II.IIER[- AuEELlSt_pPlEE} WER 2017 Electra Ansterdan Original 31 - 859 9% 12TH_93L1TH
3 Surly Wednesday Frameset - 20816 2016 999.99 PARTITION BY partition_expression (PARTITION BY model_year) 2015/2017
ORDER BY order_expression avg_prilce
i’l TPEI": FUE-L Ex E 2? - 2'316 EE':I_&- 23?9.?? Lljj_ndnw._fpameﬂ_extent FROM |JPDdUEt5
) AS window_column_alias
4] Heller Shagamaw Frame - 2016 2016 1320.99 FROM table name

Notice how the avg_price of 2018 is exactly the same whether we use the
PARTITION BY clause or the GROUP BY clause.

To reuse the same window with several window functions, define a named
window using the WINDOW keyword. This appears in the query after the
HAVING section and before the ORDER BY section.

The [order] table

Window frame extent

SELECT
window_function() OVER(window_name)

The order table contains the order_id and its date.

FROM table_name
order_id order_date [HAVING ...] A window frame is the selected set of rows in the partition over which
RYRRA. SARENLIANE 0§ _ aggregation will occur. Put simply, they are a set of rows that are somehow
1 I016-01-01TER:00: 00,0007 PARTITION BY partition_expressiaon related to the current row.
ORDER BY order_expression
5 2016-01-01T00:00:00.0007 window_Trame_extent
i S) A window frame is defined by a lower bound and an upper bound relative to
[ORDER BY ...] ; : : ok
3 A G R - B B B the current row. The lowest posml:'}le bound |5' the first rc:'w, which is knr.::wn_ us.
UNBOUNDED PRECEDING. The highest possible bound is the last row, which is
4 2016-01-03700:00:00. 0062 known as UNBOUNDED FOLLOWING. F‘r::r emr:nple, if we only ?vunt toget
rows before the current row, then we will specify the range using 5 PRECEDING.
5 2016-01-63T00:00:00.6002Z
ORDER BY is a subclause within the OVER clause. ORDER BY changes the basis on UNBOUNDED
; which the function assigns numbers to rows. P
The [order_items] table N PRECEDING
It is a must-have for window functions that assign sequences to rows, including
The order_items table lists the orders of a bicycle store. For each order_id, there RANI nnd_ROW_NUMBEFE. For emmplg, I m..re OR[?EH EY'ihe expression: “prica™on T
: . . an ascending order, then the lowest-priced item will have the lowest rank.
are several products sold (product_id). Each product_id has a discount value.
; ; ; ; i ’ M FOLLOWING
Let's compare the following two queries which differ only in the ORDER BY clause.
: : : UNBOUNDED
ofgier.IG Produet Id discount /* Rank price from HIGH->LOW %/ /* Rank price from LOW->HIGH %/ FOLLOWING
1 20 0.2 SELECT SELECT
product_name, product_name,
1 8 B.07 list_price, list_price,
RANK() OVER RANK() OVER
1 10 0.05 (ORDER BY list_price DESC) rank (ORDER BY list_price ASC) rank A : M t . |
1 16 0.05 FROM products FROM products Ccom pc nglng u erla
1 fq EI 2 product_nome list_price rank product_names Het_price rank
Trek Domane SLR 9 Disc - 2018 11999.99 1 Strider Classic 12 Balance Bike - 2013 89.99 Yﬂu can use thTE httpﬂ:fﬁbit.l”fEﬂCZtGK tf} run ﬂny 01‘- thE queriEE E}{plﬂinEd in
2 20 B.07 Trek Domane SLR B Disc - 2018 7499 .99 2 Sun Bicycles Lil Kitt'n - 2017 109.99 ; '
_ this cheat sheet.
Trek Domane SL Frameset - 2018 6490 .90 3 Trek Boy's Kickster - 2815/20817 149 .99

Ranking window functions

There are several window functions for assigning rankings to rows. Each of
these functions requires an ORDER BY sub-clause within the OVER clause.

The following are the ranking window functions and their description:

Function Syntax Function Description

Additional notes

ROW_NUMBER()
to each row within the

Assigns a sequential integer

Row numbers are not repeated within

each partition.

Value window functions

FIRST_VALUE() and LAST_VALUE() retrieve the first and last value respectively
from an ordered list of rows, where the order is defined by ORDER BY.

Value window function

Function

FIRST_VALUE(value_to_return) OVER
(ORDER BY wvalue_to_order_by)

Returns the first value in an ordered set of
values

LAST_VALUE(value_to_return) OVER
(ORDER BY walue_to_order_by)

Returns the last value in an ordered set of
values

NTH_VALUE(value_to_return, n) OVER
(ORDER BY value_to_order_by)

Returns the nth value in an ordered set of
values.

To compare the price of a particular bicycle model with the cheapest (or most
expensive) alternative, we can use the FIRST_VALUE (or LAST_VALUE).

/* Find the difference in price from
the cheapest alternative */
SELECT

product_name,
list_price,
FIRST_VALUE(list_price) OVER (
ORDER BY list_price
ROWS BETWEEN
UNBOUNDED PRECEDING
AND
UNBOUNDED FOLLOWING
) AS cheapest_price,
FROM products

ProOMGCT_rams - HM_pnce GnEapsEt_price - -1

/% Find the difference in price from

the priciest alternative #/
SELECT
product_name,
list_price,
LAST_VALUE(List_price) OVER (
ORDER BY list_price
ROWS BETWEEN
UNBOUNDED PRECEDING
AND
UNBOUNDED FOLLOWING
) AS highest_price
FROM products

produci_mome

list_price =~ Righest_pnoa - drft

LEAD, LAG

The LEAD and LAG locate a row relative to the current row.

Function Syntax Function Description

LEAD(expression
[,offset[,default_valuel])
OVER(ORDER BY columns)

Accesses the value stored in a row after the
current row.

LAG(expression
[,offset[,default_value]])
OVER(ORDER BY columns)

Accesses the value stored in a row before
the current row.

Both LEAD and LAG take three arguments:
« Expression: the name of the column from which the value is retrieved
« Offset: the number of rows to skip. Defaults to 1.

* Default_value: the value to be returned if the value retrieved is null.
Defaults to NULL.

With LAG and LEAD, you must specify ORDER BY in the OVER clause.
LEAD and LAG are most commonly used to find the value of a previous row or
the next row. For example, they are useful for calculating the year-on-year

increase of business metrics like revenue.

Here is an example of using lag to compare this year's sales to last year's.

[#* Find the number of orders in a year +/

partition of a result set. Strider Classic 12 Balance Bike 3959 B%.99 Strider Classic 12 Balance Bike 49,99 119%9.99 11918 WITH yearly_orders AS (
B i - 208 SELECT
Sun Bicycles Lil Kitt'n - 2017 139,49 ki 2 sun Bicycles Lil Kitt'n - 2817 16959 11595 . 59 11898 year(order_date) AS year
RANKO) Assigns a rank number to + Tied values are given the same rank. TEER Bi'a dichmten: = 2RIA/200T LAY 99 ikl B Trek Boy's Wickster - 2015/2617 149,99 1199959 11858 = gk
Trek Girl's Kickster - 2817 149,69 B.99 68 COUNT(DISTINCT order_id) AS num_orders

each row in a partition.

= The next rankings are skipped.

PERCENT_RANK()

percentage.

Assigns the rank number of
each row in a partition as a

* Tied values are given the same rank.

» Computed as the fraction of rows
less than the current row, i.e., the
rank of row divided by the largest
rank in the partition.

NTILE(n_buckets)

Distributes the rows of a
partition into a specified

+ For example, if we perform the
window function NTILE(S) on a table

CUME_DIST()

equal to the current row.

The cumulative distribution: the
percentage of rows less than or

« It returns a value larger than O and

at most 1.

* Tied values are given the same

cumulative distribution value.

We can use these functions to rank the product according to their prices.

/#= Rank all products by price =/
BELECT

product_name,

List_price,

ROW_NUMBER() OVER (ORDER BY list_price) AS row_num,

T, Flafie Flalimda - AAE . LI T LR LT T

Aggregate window functions

SAATMN

Aggregate functions available for GROUP BY, such as COUNT(), MIN(), MAX(),
SUM(), and AVG() are also available as window functions.

partition_column)

partition.

MAX(expression) OVER (PARTITION BY
partition_column)

Find the maximum of the expression in the
partition.

AVG(expression) OVER (PARTITION BY
partition_column)

Find the mean (average) of the expression
in the partition.

Suppose we want to find the average, maximum and minimum discount for
each product, we can achieve it as such.

FROM sales.orders
GROUP BY year(order_date)

)

/* Compare this year's sales to last year's %/
SELECT
-*I
LAG(num_orders) OVER (ORDER BY year) last_year_order,
LAG(num_orders) OVER (ORDER BY year) - num_orders diff_from_last_year

FROM yearly_orders

A OB SaE, with 100 rows, they will be in bucket Function Syntax Function Description year v num_orders last_year_order v diff_from_last_year
lnfaws 2110 40 DUckat 2/ Tows 4 COUNT (expression) OVER (PARTITION Count the number of rows that have a non- 2016 635 null null
to 60 in bucket 3, et cetera. BY partition_column) null expression in the partition.
2017 688 635 -bJ
MIN(expression) OVER (PARTITION BY Find the minimum of the expression in the 2018 297 688 394

Similarly, we can make a comparison of each year's order with the next year's.

f* Find the number of orders in a vear */f
WITH yearly_orders AS (
SELECT
vear(order_date) AS year,
COUNT(DISTINCT order_id) AS num_orders
FROM sales.orders
GROUP BY year(order_date)

/#* Compare the number of years compared to next year */

DENSE_RANK() OVER (ORDER BY list_price) AS dense_rank, SELECT SELECT =,

RANK() OVER (ORDER BY list_price) AS rank, order_id, LEAD(num_orders) OVER (ORDER BY year) next_year_order,

PERCENT_RANK() OVER (ORDER BY list_price) AS pct_rank, product_id, LEAD(num_orders) OVER (ORDER BY year) - num_orders diff_from_next_year
NTILE(75) OVER (ORDER BY list_price) AS ntile, discount, FROM yearly_orders

CUME_DIST() OVER (ORDER BY list_price) AS cume_dist

FROM products

AVG(discount) DVER (PARTITION BY product_id) AS avg_discount,
MIN(discount) OVER (PARTITION BY product_id) AS min_discount,

MAX(discount) OVER (PARTITION BY product_id) AS max_discount year v num_orders v next_year_order diff_from_next_year v

product_nama list_price oW _num densa_rank ronk pot_rank ntila ~ cume_dist -~ FHDH Ur\dﬂr_itﬂms 291& 635 ﬁEE 53
Strider Classic 12 Balance Bike 89.99 1 1 1 2] 1 0.0031152648
- 2018 order_id product_id v discount avg_discount min_discount max_discount 2017 688 299 -394
Sun Bicycles Lil Kitt'm - 2017 189.99 2 2 2 g.083125 1 0.8062305296 5 16 9.05 0.113191 0.05 9.2
Trek Boy's Kickster - 2015/2817 149.99 3 3 3 B.00625 1 0.0124410592 ’ ' ; ’ 2018 292 null null
Trek Girl's Kickster - 2817 149.99 4 3 3 B.808625 1 B.8124618592 2 20 0.87 8.11253 B.05 .2
Trek Kickster - 2818 15%9.99 5 & 5 @.8125 1 B.8155768324 3 20 B.05 B.11253 0.05 B.2
Trek Precaliber 12 Boys - 2817 189.99 & 5 & f.015525 2 D0.8218048534

: 3 5 8.65 0.105581 0.05 0.2
Trek Precaliber 12 Girls - 2017 189.99) 5 & 8.015525 2 DB.021B04B536

